miércoles, 6 de noviembre de 2013

Volume vs. Pressure experiment

Volume vs. Pressure experiment

1)    Tables

Volume (mL)
Pressure (hPa)
65
0
64
20
63
40
62
50
61
70
60
85
59
110
58
140
57
150
56
170
55
200
54
225
53
250
52
275
51
300
50
330
49
350
48
375
47
420
46
450
45
490
44
510
43
550
42
590
41
625
40
675
39
710
38
770
37
830
36
855
35
900
34
955
33
1000
32
1010
31
1150
30
1220
29
1285
28
1425
27
1500
26
1560
25
1720
24
1750
23
1930
22
2030
21
2160
20
2325

Volume (mL)
Pressure (hPa)
0.02
0.00
0.02
20.00
0.02
40.00
0.02
50.00
0.02
70.00
0.02
85.00
0.02
110.00
0.02
140.00
0.02
150.00
0.02
170.00
0.02
200.00
0.02
225.00
0.02
250.00
0.02
275.00
0.02
300.00
0.02
330.00
0.02
350.00
0.02
375.00
0.02
420.00
0.02
450.00
0.02
490.00
0.02
510.00
0.02
550.00
0.02
590.00
0.02
625.00
0.02
675.00
0.02
710.00
0.02
770.00
0.02
830.00
0.02
855.00
0.02
900.00
0.02
955.00
0.02
1000.00
0.02
1010.00
0.02
1150.00
0.02
1220.00
0.02
1285.00
0.02
1425.00
0.02
1500.00
0.02
1560.00
0.03
1720.00
0.03
1750.00
0.03
1930.00
0.03
2030.00
0.03
2160.00
0.03
2325.00

2) Graphs






3) Conclusion

While it’s true that our trend lines don’t really make sense in the context of the problem; one of them is a polynomial, we can agree that we can obtain some valuable conclusions by looking at our graphs. The first one somewhat shows us an exponential function and although, the second one does too, we can assume that our data points aren’t extremely reliable and that this function could be considered linear, hence the linear trend line. 

In other words, we see that as the volume increases, the pressure of the gas-air decreases proportionally. In fact, volume and pressure are inversely proportional.

This leads us to Boyle’s law, which says:



This equation proves the exact same theory as the conclusion above.